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Abstract. Ultrasonic Guided Wave inspection and structural health monitoring is being considered today in 
such natural wave guide structures as plates, multi-layer structures, rods, rails, piping and tubing, an interface, 
and curved or flat layers on a half space. An increased understanding of the basic physics and wave 
mechanics associated with guided wave inspection has led to an increase in practical nondestructive 
evaluation and inspection problems. Computing power today is also making dreams come true, where only a 
vision was possible decades ago. A principal advantage of guided waves is inspection over long distances 
with excellent sensitivity from a single probe position. There is also an ability to inspect hidden structures and 
structures under water, coatings, insulations, and concrete. Basic theoretical aspects of dispersion curve 
analysis, wave structure, source influence, sensor types and instrumentation possibilities and 
commercialization ventures will be discussed along with a variety of practical applications on ship hull, 
containment structures, aircraft, ice detection, pipelines, rail, overlap joints, and crystal manufacture. Phased 
array focusing in pipes and across elbows will be highlighted. Computational aspects of FEM and BEM 
analysis for defect classification and sizing analysis will be outlined. Future directions of leave in place sensors 
and wireless activity will also be presented. 

Introduction 
Ultrasonic guided waves are becoming more commonplace in industry because of the tremendous advances 
being made in the mathematics and mechanics of wave propagation that allows us to understand the unusual 
behavior characteristics that could become a major benefit in ultrasonic non-destructive testing 
methodologies. For the plenary talk given at the Asian Pacific Non-Destructive Testing Conference a great 
deal of material was covered on guided waves of which only a limited amount of information can be presented 
in this summary paper. Nevertheless, this summary paper serves as an instrument of knowledge for those 
interested and who want to get involved in ultrasonic guided wave analysis. The first three references include 
very basic material associated with ultrasonic guided waves in solid media along with some basic principles of 
dispersion curve analysis and an interesting example of the utilization of wave structure in guided wave analysis 
that allows us to perform guided wave testing of water loaded structures. 

References 4 and 5 contain very large literature surveys of a lot of very significant work that has been 
carried out in guided wave mechanics over the last few decades. A vision of ultrasonic guided wave inspection 
potential is also outlined in those papers. To add to the basic concepts of ultrasonic guided waves visualization 
schemes are often quite useful. One interesting example is presented by Hayashi and Rose [6]. 

To think of the utilization of ultrasonic guided waves we can consider a variety of different natural wave 
guides as outlined in Table 1. Guided wave inspection is a natural for any of these structures so when you 
really think about it guided waves can be applied to many, many structures very quickly and efficiently. An 
understanding of the basic wave mechanics and wave propagation principles for various sensors and mode 
types is essential, though, if one is to carry out some reliable tests. The benefits of guided waves are illustrated 
in  

Table 2. The most interesting one of course is to be able to inspect over long distances from a single probe 
position. 

Table 1. Natural Waveguides 
Plates (aircraft skin) 

Rods (cylindrical, square, rail, etc.) 
Hollow cylinder (pipes, tubing) 

Multi-layer structures 
Curved or flat surfaces on a half-space 
Layer or multiple layers on a half-space 

An interface 
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Table 2. Benefits of Guided Waves 
Inspection over long distances from a single probe position 
By mode and frequency tuning, to establish wave resonances and excellent overall defect detection and sizing 
potential. 
Often greater sensitivity than that obtained in standard normal beam ultrasonic inspection or other NDT 
techniques. (Beam focusing is on the horizon for even improved sensitivity.) 
Ability to inspect hidden structures and structures under water, coatings, insulations, and concrete with 
excellent sensitivity. 
Cost effectiveness because of inspection simplicity and speed. 

Ultrasonic guided waves can be produced in a structure by a variety of different techniques including angle 
beam transducers, comb type transducers, EMATs and magnetostrictive type sensors. The utilization of a 
comb-type transducer outlined by Rose and Quarry [7] is an interesting one to consider. Comb transducers 
can produce surface and guided waves in any structure and material including very low wave velocity 
composite materials where generation possibilities with an angle beam technique is not even possible. Other 
benefits of a comb transducer are associated with overall size and low profile height and cost.  

A sample phase and group velocity dispersion curve is presented in Figure 1. Every natural wave guided 
has associated with it a set of dispersion curves that presents to us the wave propagation possibilities in that 
structure. Details and analysis can be found in [1]. A sample set of wave structures are illustrated in Figure 2. 
At each point of a dispersion curve there is a different wave structure. The wave structure is associated with 
sensitivity, penetration power, and the ability to propagate in a water loaded structure, for example. In Figure 
3 is an interesting concept associated with an ability to get on to a particular point in a dispersion curve. When 
studying the dispersion curve it is easy to understand that there is a corresponding frequency bandwidth 
associated with the abscissa value, but there is also a phase velocity bandwidth as illustrated in Figure 3 
associated with the ordinate value on the phase velocity dispersion curve. This means that we are actually 
exciting a fairly large zone and multiple modes could propagate in a structure at the same time. Details on the 
wave mechanics of this source influence can be found in [1]. 

A variety of different applications and other aspects of guided wave inspection are presented in this paper 
in the following paragraph. 
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Figure 1. Phase and group velocity dispersion curves for a traction free aluminum plate 
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 Figure 2. Sample wave structure for various points on the S0 mode of an aluminum plate 
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Figure 3. Sample phase velocity spectra showing excitation amplitude versus phase velocity (frequency = 
4.3 MHz, bandwidth = .6 MHz) 

Applications 

Aircraft applications are presented in references [8-12]. A variety of different structures are considered 
including lap-splice joints, tear straps, landing gears, transmission beams in a helicopter and so on. A 
lap-splice inspection sample problem is illustrated in Figure 4. The concept is a very simple one, but please 
note that even though the test is based on an ability to send ultrasonic energy from material one into material 
two, it is joined together adhesively and perhaps even by riveted areas. The ability to send this ultrasonic 
energy depends on the selection of a particular mode and frequency. That particular point must have the 
appropriate wave structure that would allow the energy to go from position one to two. This can be achieved 
by frequency tuning, as an example, unless you know of course the precise point on the dispersion curve that 
you would like to be working with beforehand. The test is therefore very simple. If the ultrasonic energy can 
get through you have an excellent adhesive joint. If it cannot get through, you have a problem or delamination. 
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One technique is presented that shows how wing ice detection can be considered from an ultrasonic guided 
wave point of view. Another is on titanium diffusion bonding with guided waves. Another deals with a leave in 
place sensor for damage detection in a helicopter transmission beam. 

A sample problem using shear horizontal EMAT transducers for damage detection in a ship hull is 
presented in [13]. An ultrasonic assessment of Poisson’s ratio in thin wires is included in [14]. Steel cable 
inspection with magnetostrictive sensors for guided wave generation is presented in [15]. The utilization of 
various wave guides, associated with ultrasonic guided wave problems, is quite useful. In [16] for example, a 
technique is presented that shows how a composite wave guide can be used to get ultrasonic energy into a 
CaF2 melt to monitor interface position in CaF2 crystal manufacture. Another wave guide application is 
outlined in [17] where a harmonic scalpel is used to do surgery where the activation is associated with energy 
sent to the tip of the rod for surgical use. 

Some adhesive bonding and joining applications are presented in [18-20]. Ultrasonic guided waves are 
particularly useful in adhesive bond inspection because they can produce both longitudinal and shear wave 
energy at the interface between materials, hence making it useful for both detection of adhesive and cohesive 
problems associated with the bonded structure. In the paper on the plate overlap [20], it is shown how 
frequency tuning and overall mode choice can allow ultrasonic energy to get across an unusual plate overlap 
or to achieve a significant reflection depending on the goal of the particular inspection. 

Application for containment structures and concrete with guided waves is presented in references [21, 
22]. Some new and interesting tomographic results with guided wave tomography of defects in a composite 
plate are presented in [23]. Fouling detection in the food industry is outlined in [24]. Viscosity measurements 
and in particular a magnetostrictive sensor to produce torsional waves in molten materials is outlined in [25]. 
A novel couplant-free mediator ultrasonic wave technique is used to detect surface cracks in green parts in 
[26]. The comparison of two different states of a composite material as an example for porosity variation is 
illustrated in [27].  

Guided waves are being used in rail inspection in the railroad industry as illustrated in [28-30]. A sample 
guided wave dispersion result is illustrated in Figure 5 where an experimental profile is obtained from a two 
dimensional Fourier transform and then compared with a theoretical result highlighting dominant modes of the 
structure. Defect detection in rail from a variety of different means is being considered. As an example a 
specially prepared sensor wrapped around the rail to acquire data is reported in [28].  The ability of 
developing a longer range rail inspection from a test car or perhaps by detection from a train moving down the 
track before it actually reaches the break or defect in the rail is outlined in [29]. 

A variety of pipe applications and background material is included in references [31-38]. Many 
parameters associated with pipe inspection can affect the wave propagation characteristics and inspection 
potential. See Table 3. A sample photograph of a commercially available Teletest pipeline inspection rig is 
illustrated in Figure 6. Notice how the entire transducer wraps around the pipe assembly where guided waves 
can then be sent off into either direction into this underground pipeline. The titles of the references are 
somewhat self explanatory with respect to the technology explored in pipe inspection.  

An interesting concept that is put forward at the current time is associated with the ability to carry out 
focusing in a pipeline structure. Some of the references point out how this can be done. Shown in Figure 7 
though is a sample result. Notice in the neighborhood of 4300 µsec along a 16” schedule 40 pipe a raw sum 
without time delay, that is the so-called axisymmetric loading onto the structure where the defect is seen with 
a peak to peak level of 41. By using the appropriate time delay profile around the pipe of four particular 
segments, that is utilizing 90° loading profiles, the peak to peak value increases to about 95, roughly a 7 dB 
improvement. Notice the back wall echo from one of the modes used in the structure remains constant but 
some of the other signals are enhanced. 

An interesting area of study now is associated with utilization of longitudinal versus torsional guided waves 
in a structure. Mode type and frequency is always of interest. An initial comparison is presented in Table 4. 
Some general comments on pipe and elbow inspection associated with the focusing potential is illustrated in  

Table 5.  
 
 
 
 
 
 
 
 
 
 

Key Engineering Materials Vols. 270-273 17



Title of Publication (to be inserted by the publisher) 
 

Table 3. Parameters affecting guided wave propagation in pipe 

Pipe diameter and thickness 
Longitudinal or torsional excitation 
Degree of partial loading around circumference 
Frequency 
Frequency bandwidth 
Phase velocity 
Pipe anomalies like branches, elbows 
Mode selected and subsequent wave structure 
Loading method piezoelectric, EMAT, impact, etc. 
Beam phased array wave formation 
Instrumentation parameters of pulser voltage, filters, amplifiers, etc. 
Defect characteristics such as shape, circumferential extent, and depth 

 
Transmitter Receiver

1

2  
a). Ultrasonic through-transmission approach for Lap Splice joint inspection  

 

 
b). Double spring “hopping probe” used for the inspection of a Lap Splice joint  

Figure 4. A lap splice inspection sample problem. 
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(a) Experimental, upper surface of a rail head 
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highlighted  

Figure 5. Guided wave dispersion curves for a bar with an arbitrary cross-section – a rail example 
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Figure 6. Pipeline inspection of  “bell holes” and unpiggable pipe sections (Teletest®) 
 

 non-focused defect  

Raw sum without time delays 

focused defect 

Phase aligned sum with excitation time delays  
Figure 7. Comparisons of focused and non-focused results 

Table 4. Comparisons of longitudinal vs. torsional guided waves 
Generally less mode conversion with torsional waves. 
Wave structure is constant for a particular mode for all torsional mode frequencies compared to considerable variation 
vs. frequency for Lamb waves. 
Torsional modes are less sensitive to pipe boundary conditions of roughness, coating, etc. because of lateral particle 
velocity. 
Torsional modes are not sensitive to water loading conditions in a structure because of in plane displacement vibration 
characteristics; hence no need to tune Lamb waves to achieve this in plane vibration condition. 
Torsional modes could be insensitive to certain kinds of defects that Lamb waves could be extremely sensitive to 
because of having both in plane and out of plane displacement components.  
Penetration power of both modes could also vary significantly with frequency and presence of certain boundary 
conditions, presenting no specific advantage to one or the other. 
Regardless of input mode, reflection and transmission from a truly 3-dimensional defect situation can produce both 
non-axisymmetric Lamb and Torsional modes.  
Many additional comparisons will be developed as a result of new research efforts already underway. 

 
Table 5. Comments on pipe and elbow inspection 

Natural focusing can be accomplished by using frequency tuning and/or non-axisymmetric loading of a pipe structure 
via variations in the angular profiles. 
Phased array focusing can be accomplished by using time delays and multiple sensors impinging non-axisymmetric 
energy into a pipe. 
Long range ultrasonic guided wave inspection with focusing and frequency tuning will be able to achieve better 
sensitivity to smaller defects with significant improvement in S/N ratio for a variety of test conditions. 
Both longitudinal and torsional waves should be included in the guided wave inspection tool box. 

Computational 

Many computational aspects of guided waves are being considered by groups all over the world. One result 
is shown here. See [39, 40]. Notice in Figure  8 a very powerful result. The amplitude of the reflection is 
proportional to the depth of the defect. This is not always true however, but for the right mode and over a 
particular frequency range this is often possible. 
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Figure  8. Sample computational result – approximate reflection coefficients for n0 mode under n0 incident for 
0.012” (0.3mm) elliptical defect length and 10%, 30%, …, 90% through plate thickness depth 

Concluding Remarks and Future Directions 
• Greater penetration power resolution and sensitivity as a result of advances in guided wave physics and 

mechanics is becoming possible. 
• Technology transfer of current studies to industry is taking place. 
• Automated defect and location analysis followed by sophisticated computational and artificial intelligence 

algorithm development for defect classification and sizing analysis is on the way. 
• Smart structures and materials with embedded sensors is becoming a reality. 
• Miniature leave-in-place sensors on aircraft, pipelines, etc. are becoming commonplace. 
• Wave resonance automatic “tuning” algorithms of frequency, phase velocity, and mode type for defect 

detection is on the way. 
• Guided wave phased array focusing methods are being developed for improved penetration power, 

sensitivity, S/N. 
• Wireless activation and reception with miniature batteries, pulser receivers, chips, antennas, etc. are on the 

way. 
• More air coupled and laser based systems are being considered. 
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